
 
Fusion of Face Recognition Algorithms (FOFRA)  

Prize Challenge 2018 
 

 

Concept and API for Fusion of 
Face Recognition Scores and Templates  

 
 
 

Patrick Grother 
Mei Ngan  

National Institute of Standards and Technology  (NIST) 

 

Christopher Boehnen 
Intelligence Advanced Research Projects Activity  (IARPA) 

 

Lars Ericson 
Science Applications International Corporation (SAIC)  

 

 

July 11, 2018 

 

 

 

 

 

  



FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
2 

 

Table of Contents 

1. Overview ............................................................................................................................................................ 3 

1.1. Organization .............................................................................................................................................. 3 
1.2. Motivation ................................................................................................................................................ 3 

2. Overview ............................................................................................................................................................ 3 

3. Rules for Participation ........................................................................................................................................ 4 

3.1. Participation Agreement ........................................................................................................................... 4 
3.2. Options for participation .......................................................................................................................... 4 
3.3. Submissions for open-source implementations ....................................................................................... 4 

4. Training Data ...................................................................................................................................................... 6 

5. Validation ........................................................................................................................................................... 6 

6. Reference Implementation ................................................................................................................................ 6 

7. C++ APIs for score and template-level fusion (Open or closed-source implementation) ................................. 6 

7.1. Score fusion of verification scores and identification candidate lists ...................................................... 6 
7.2. Template fusion for verification and identification .................................................................................. 7 
7.3. C++ API data elements .............................................................................................................................. 9 
7.4. Operating system, compilation, and linking environment ..................................................................... 10 
7.5. Library naming requirements ................................................................................................................. 11 
7.6. Hardware Specifications ......................................................................................................................... 11 
7.7. Single-thread requirement and parallelization ...................................................................................... 12 
7.8. Submission folder hierarchy ................................................................................................................... 12 

8. R APIs for score and template-level fusion (Open-source implementation) ................................................... 12 

8.1. Score-level fusion .................................................................................................................................... 12 
8.2. Template-level fusion ............................................................................................................................. 13 
8.3. Source code naming requirements......................................................................................................... 14 
8.4. Submission folder hierarchy ................................................................................................................... 15 

 
  



FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
3 

1. Overview 
IARPA is sponsoring the Fusion of Face Recogition Algorithms (FOFRA) 2018 Prize Challenge to improve 
biometric fusion technology. The challenge addresses fusion of data from face recognition algorithms each 
applied to common input imagery. The goal is multi-algorithm fusion.  Fusion is conducted either at the 
template level, or separately, at the score level.  This document describes the conduct of the challenge and the 
application programming interface (API) behind which technology must operate. 

Before reading this document, prospective participants should view the companion document, Overview of 
FOFRA 2018 Fusion Prize Challenge, that details what fusion tasks are in-scope.  All supporting material is 
available at https://www.nist.gov/programs-projects/fusion-face-recognition-algorithms-2018. 

1.1. Organization 

IARPA is the sponsor the challenge.  IARPA has delegated the actual evaluation to NIST who is responsible for 
the development and distribution of data, execution of fusion algorithms, performance analysis and reporting 
results to IARPA.  IARPA, in consultation with a panel of US Government judges will determine who to award 
prizes to on the basis of the NIST results. 

1.2. Motivation 

Face recognition error rates, particularly on uncontrolled face imagery, are well above zero. While algorithm 
development has seen considerable investment, other mechanisms for improving accuracy are known. Among 
them, there is a large academic literature on biometric fusion, covering multimodal and multi-algorithmic fusion. 
It shows that substantial accuracy gains can be made over using a single mode, or a single algorithm alone, and 
this can be achieved, in large part, using quite simple methods.  The gains reduce when the fused inputs are 
correlated.  The vast majority of the literature addresses biometric verification, rather than identification. 
Moreover, the literature covers score-level fusion rather than feature (i.e. template) level fusion.  The latter, on 
information theoretic grounds, offers greater accuracy gains at the expense of some complexity. 

2. Overview 
The FOFRA 2018 has two tracks, one for score-level fusion and the second for template-level fusion, as detailed 
below.  A developer may enter either or both tracks. A developer may submit closed-source or open-source 
implementations, where “closed-source” means compiled libraries.  NIST provides score and template training 
data to participants and asks them to develop fusion schemes and to provide those to NIST who will execute 
them on new, disjoint, test sets.  

Score-level fusion: Given data from K >= 2 face recognition algorithms, a developer shall provide the following 
for each possible combination1 of those algorithms: 

− pre-trained “model” suitable for normalizing and fusing scores from the specified algorithms;  
− a mechanism to fuse verification scores together to produce one output verification score; 
− a mechanism to fuse identification candidate lists to produce one output candidate list. 

Implementation of verification score fusion is not a requirement for candidate list fusion and vice versa, 
meaning participants are allowed to implement one and not the other. 

For template-level fusion: Given data from K >= 2 face recognition algorithms, a developer shall provide the 
following for each possible combination of those algorithms:  

                                                           

1 Given algorithms A, B, C the combinations are AB, AC, BC, ABC. 

https://www.nist.gov/programs-projects/fusion-face-recognition-algorithms-2018


FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
4 

− pre-trained “models” suitable for fusing templates from the specified algorithms;  
− a mechanism to fuse K templates together to produce one output template; 
− a mechanism to compare two templates to produce a comparison score; 
− a mechanism to enroll N templates into a gallery; 
− a mechanism to search a new fused probe template against that gallery to produce a candidate list.  

Implementation of template fusion and at least one of template verification or template search from a gallery is 
required to participate in this track.  Implementation of template verification is not a requirement for template 
search from a gallery, and vice versa, meaning participants are allowed to implement one and not the other. 

The following sections provide the APIs and supporting data structures for score and template-level fusion.  The 
purpose of defining an API is to allow ease of automation at NIST, and to control what data the implementation 
has access to, so that it obeys operational constraints.  Developers have the option of submitting either 

1) an open or closed-source C++ implementation of their fusion method (see Section 4) or  
2) an open-source R-language implementation (see Section 8). 

3. Rules for Participation 

3.1. Participation Agreement 

NIST requires all FOFRA 2018 participants to send a completed participation agreement either prior to or in 
conjunction with their very first submission.  The participation agreement posted on the FOFRA 2018 website. 

3.2. Options for participation 

All submissions shall implement exactly one of the functionalities defined in Table 1.  A C++ library or R source 
code shall not implement the API of more than one task track.  Therefore, participants shall send separate 
libraries or source files for each track individually. 

Table 1 – FOFRA track participation requirements 

Track Score Fusion Template Fusion 

C++ API Section 7.1 Section 7.2 

R API Section 8.1 Section 8.2 

 

All submissions shall be named according to the naming conventions defined in the appropriate sections listed in 
Table 2. 

Table 2 – FOFRA submission naming requirements 

Track Naming Requirements 

C++ API  Section 7.5 

R API Section 8.3 

3.3. Submissions for open-source implementations 

3.3.1. Open-source implementation 

For developers who choose to submit open-source code to NIST, there are two options. 

− A full implementation – declarations and definitions - of the C++ interface given in section 4. 



FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
5 

− R2 code as defined in section 8. 

3.3.2. Licensing 

Important: In addition to completing a participation agreement, developers who submit an open-source 
implementation must 

1. Make their software available for public download on a reputable website such as GitHub, university 
website, or corporate website. 

2. Provide written documentation which explicitly acknowledges that their code may be released to the 
public and US government.  This can potentially be achieved by releasing code under an Open Source 
Initiative (OSI)-approved license - https://opensource.org/licenses.  

3.3.3. Participation Eligibility 

To be eligible to win a prize under this competition, an individual or entity: 

1. Must have visited the FOFRA website at Challenge.gov; 

2. Must have read the FOFRA overview slides; 

3. Must have completed and submitted a FOFRA participation agreement form; 

4. Must have complied with all the requirements under these rules; and 

5. Must be (1) an individual or team member each of whose members are 18 years of age and over, or (2) 
an entity incorporated.  

The following are ineligible to participate 

1. May not be a federal entity or federal employee acting within the scope of their employment.  An 
individual or entity shall not be deemed ineligible because the individual or entity used federal facilities 
or consulted with federal employees during a competition if the facilities and employees are made 
available to all individuals and entities participating in the competition on an equitable basis. 

2. Employees of IARPA, NIST, their affiliates, and/or any other individual or entity associated with the 
development, evaluation, or administration of the competition as well as members of such persons’ 
immediate families (spouses, children, siblings, parents), and persons living in the same household as 
such persons, whether or not related, are not eligible to participate in the competition.  

3. Foreign Nationals & International Developers:  All Developers can participate with this exception: 
residents of, Iran, Cuba, North Korea, Crimea Region of Ukraine, Sudan or Syria or other countries 
prohibited on the U.S. State Department’s State Sponsors of Terrorism list.  In addition, Developers are 
not eligible to participate if they are on the Specially Designated National list promulgated and 
amended, from time to time, by the United States Department of the Treasury.  It is the responsibility of 
the Developer to ensure that they are allowed to export their technology solution to the United States 
for the Live Test.  Additionally, it is the responsibility of participants to ensure that no US law export 
control restrictions would prevent them from participating when foreign nationals are involved.  If there 
are US export control concerns, please contact IARPA and we will attempt to make reasonable 
accommodations if possible. IARPA will not be held responsible for devices shipped or transported to 
the U.S. that are confiscated by local authorities or that violate local export laws. 

In addition: 

                                                           

2 https://www.r-project.org/ 

https://opensource.org/licenses


FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
6 

1. Federal grantees may not use federal funds to develop challenge applications unless consistent with the 
purpose of their grant award. Federal contractors may not use federal funds from a contract to develop 
challenge applications or to fund efforts in support of a challenge submission without written approval 
of both IARPA and their Federal government sponsor.  Entities affiliated with the IARPA Janus program 
may participate, but are ineligible to win prize monies. 

2. Entrants must agree to assume any and all risks and waive claims against the federal government and its 
related entities, except in the case of willful misconduct, for any injury, death, damage, or loss of 
property, revenue, or profits, whether direct, indirect, or consequential, arising from their participation 
in a competition, whether the injury, death, damage, or loss arises through negligence or otherwise. 

3. Entrants must also agree to indemnify the federal government against third-party claims for damages 
arising from or related to competition activities. Entrants are not required to obtain liability insurance or 
demonstrate financial responsibility in order to participate in the competition. 

4. By participating in the competition, each entrant agrees to comply with and abide by these rules and the 
decisions of IARPA, NIST and/or the individual judges, which shall be final and binding in all respects. 

By participating in the competition, each entrant agrees to follow all applicable local, state, federal and country 
of residence laws and regulations. 

4. Training Data 

Provided as a part of this challenge is training data, which consists of 1) match scores and 2) feature vectors 
from K different algorithms for the purposes of fusion development.  Participants are to take the provided 
training data to develop fusion scheme(s) for the K algorithm scores and feature vectors.  As a part of the 
validation process, the developer’s submission will be run on the training data, and the output(s) will be 
submitted to NIST, along with the implementation. 

5. Validation 

A validation package will be provided for the FOFRA 2018, and all participants must run their software through 
the provided validation package prior to submission.  The purpose of validation is to ensure consistent algorithm 
output between the participant’s execution and NIST’s execution. 

6. Reference Implementation 

Included with the FOFRA 2018 validation package is a reference implementation of this API.  The reference 
implementation provides very basic fusion schemes for example purposes only, but more importantly, it 
demonstrates mechanically how one could go about implementing, compiling, and building this API. 

7. C++ APIs for score and template-level fusion (Open or closed-source implementation) 

This section provides the C++ APIs and supporting data structures for score and template-level fusion.   

7.1. Score fusion of verification scores and identification candidate lists 

The software must implement the interface of   



FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
7 

Table 3. It requires support for fusion of scores from named algorithms, for which prior training has occurred.  
Participants may implement either or both score/candidate list fusion.  For any function that isn’t implemented, 
the software shall return ReturnCode::NotImplemented.  

  



FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
8 

Table 3 - Score level fusion of verification scores and identification candidate lists 

 C++ code fragment  Remarks 

1. class ScoreFuserInterface {  

2. public: 

    static enum class Type { 

        Verification = 0, 

        Identification     

    }; 

 

 

3.     virtual ReturnStatus initialize( 

        const std::string &directory, 

        const ScoreFuserInterface::Type &type) = 0; 

The function reads a pre-computed fusion scheme 
from the provided directory (e.g. pre-trained 
models), including any normalization information.  
The contents of the directory are developer-
defined and are provided to NIST by the developer.  
Type indicates whether to load the fusion scheme 
for fusion of verification scores (Type::Verification) 
or identification candidate lists 
(Type::Identification). 

4.     virtual ReturnStatus fuseVerificationScores( 
       const ScoreSet &inputScores, 

       double &fusedScore) = 0; 

Function to execute fusion of verification scores. 
Given K ≥ 2 scores, it produces one fused score.  
This function will be preceded by a call to 
initialize(type=Type::Verification). 

5.     virtual ReturnStatus fuseCandidateLists( 

       const std::vector<CandidateList> &inputLists, 

       CandidateList &fusedLists) = 0; 

Function to execute fusion of candidate lists. Given 
K ≥ 2 candidate lists, it produces one output 
candidate list.  The output fusedLists will initially be 
an empty vector.  It is up to the implementation to 
add entries into the list.  All input lists have the 
same length, L. The output lists may have variable 
length L ≤ x ≤ 2L.  This funtion will be preceded by a 
call to initialize(type=Type::Identification). 

6.     static std::shared_ptr<ScoreFuserInterface> 

    getImplementation(); 
Factory method to return a managed pointer to the 
ScoreFuserInterface object.  This function 
is implemented by the submitted library and must 
return a managed pointer to the 
ScoreFuserInterface object. 

7.2. Template fusion for verification and identification 

A developer may implement a scheme to fuse templates.  Because matching of fused templates is potentially a 
non-trivial task – e.g. determining a distance metric – the implementation must also provide recognition 
support.  The software must implement the interface of Table 4, which declares the following: 

− a function to fuse (two or more) templates 

− template comparison function to support biometric verification 

− gallery construction and search functions to support identification 

Participants may implement either or both template verification/identification.  For any function that isn’t 
implemented, the software shall return ReturnCode::NotImplemented.  

NOTE: The identification part of this could be built by implementing a 1:N search as N 1:1 comparisons followed 
by a sort operation. Note however, that faster and more accurate solutions exist. 



FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
9 

Table 4 – Template-level fuser class 

 C++ code fragment  Remarks 

1. class TemplateFuserInterface {  
2. public: 

    static enum class Action { 

        Fuse = 0, 

        Verify, 

        Identify 

    }; 

 

3.     virtual ReturnStatus initialize( 

        const std::string &directory, 

        const TemplateFuserInterface::Action &action) = 0; 

This function initializes the capability as 
specified via the action parameter: 

Action::Fuse - reads a pre-computed fusion 
scheme from the provided directory (e.g. pre-
trained models), including any normalization 
information.   

Action::Verify - Initialize a verifier.  The 
directory must contain sufficient information 
to identify which algorithms were fused and to 
load an appropriate verifier. 

Action::Identify - Initialize an identifier.  The 
directory must contain sufficient information 
to identity which algorithms were fused and to 
load an appropriate identifier.  

The contents of the directory are developer-
defined and are provided to NIST by the 
developer 

4.     virtual ReturnStatus fuseTemplates( 
        const std::vector<Template> &inputTemplates, 

        Template &fusedTemplate) = 0; 

Function to execute fusion. This function will 
be preceded by a call to initialize(action = 
Action::Fuse).  Given a vector of templates 
(each template is generated from a different 
algorithm), the implementation produces one 
template, which is the fusion between all input 
templates. 

5. 
    virtual ReturnStatus verify( 

      const Template &enroll, 

      const Template &authentication, 

      double &score) = 0; 

Given fused templates, the implementation 
must support one-to-one comparison of two 
such templates via this function.  Compare an 
authentication template with an enrollment 
template and return a similarity score.  This 
function will be preceded by a call to 
initialize(action = Action::Verify). 

6.     virtual ReturnStatus createGallery( 

        const std::vector<Template> &templates, 

        const std::vector<uint32_t> &ids) = 0; 

Create a gallery by adding a set of N identified 
templates to the implementation’s internal 
gallery structure.  This function should copy or 
otherwise process the input so that searches 
can follow.  This function will be preceded by a 
call to initialize(action = Action::Identify).  The 
provided templates will contain N templates of 
N identities or people.  ids[i] corresponds to 
templates[i]. 



FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
10 

7.     virtual ReturnStatus search( 

          const Template &probe, 

          CandidateList &candidates);  

Search a probe template against the gallery 
and fill the pre-allocated candidate list with 
hypothesized candidates.  This function will be 
preceded by a call to 
initialize(action=Action::Identify) and 
createGallery().  The number of candidates to 
populate is specified by candidates.size(). 

8.     static std::shared_ptr<TemplateFuserInterface> 

    getImplementation(); 
Factory method to return a managed pointer 
to the TemplateFuserInterface object.  
This function is implemented by the submitted 
library and must return a managed pointer to 
the TemplateFuserInterface object. 

7.3. C++ API data elements 

The C++ data structures defined in this section are used in the C++ score- and template-level fusion APIs. 

7.3.1. Data structure for return value of API function calls 

Table 5 – Enumeration of return codes 

Return code as C++ enumeration Meaning 

enum class ReturnCode {  

    Success=0, Success 

    ConfigError, Error reading configuration files 

    ParseError, Cannot parse the input data 

    TemplateCreationError, Elective refusal to produce a fused template (e.g. too little 
information) 

    VerifTemplateError, Either or both of the input templates were result of failed feature 
extraction 

    NumDataError, The implementation cannot support the number of images 

    TemplateFormatError, Template file is in an incorrect format or defective 

    InputLocationError, Cannot locate the input data – the input files or names seem 
incorrect 

    MemoryError, Memory allocation failed (e.g. out of memory) 

    NotImplemented, Function is not implemented 

    NonCongruentVectors, Vectors of different lengths passed to function expecting same 
lengths 

    VendorError Vendor-defined failure.  Vendor errors shall return this error code 
and document the specific failure in the ReturnStatus.info string 
from Table 6. 

};  

 

Table 6 – ReturnStatus structure 

C++ code fragment Meaning 

struct ReturnStatus {  

    ReturnCode code; Return Code 

    std::string info; Optional information string 

    // constructors  

}; 
using ReturnStatus = struct ReturnStatus; 

 



FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
11 

7.3.2. Datatypes for sets of verification scores 

A face verification algorithm, or a fusion algorithm, produce comparison scores, represented in double precision.  
When applied to N image pairs, N scores result and are encoded as: 

Table 7 – Datatype for a set of similarity scores 

C++ code fragment Meaning 

using ScoreSet = std::vector<double>; A set of scores, some genuine, some impostor 

 

7.3.3. Datatype for candidates 

Table 8 – Candidate structure 

C++ code fragment Meaning 

struct Candidate {  

    double score; Similarity score from recognition or fusion 

    uint32_t identity; Identity hypothesis, a valid gallery identity label 

}; 

using Candidate = struct Candidate; 

 

7.3.4. Datatype for candidate lists 

When searching a gallery containing N enrollments, biometric identification algorithms generally return L << N 
candidates, where L may be user specified, or a random variable. In FOFRA, the number of candidates will be 
user-specified, e.g. L = 50.  An identification search shall produce a candidate list encoded as: 

Table 9 – Datatype for a candidate list 

C++ code fragment Meaning 

using CandidateList = std::vector<Candidate>; A set of scores and hypothesized identities 

7.3.5. Datatype for a single template 

Templates, i.e. feature vectors, are represented as: 

Table 10 – Datatype for a single template 

C++ code fragment Meaning 

using Template = std::vector<double>; Features for recognition 

7.4. Operating system, compilation, and linking environment 

The operating system that the submitted implementations shall run on will be released as a downloadable file 
accessible from http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso, which is the 64-
bit version of CentOS 7.2 running Linux kernel 3.10.0. 

For this test, Windows machines will not be used. Windows-compiled libraries are not permitted.  All software 
must run under CentOS 7.2. 

NIST will link the provided library file(s) to our C++ language test drivers.  Participants are required to provide 
their library in a format that is dynamically-linkable using the C++11 compiler, g++ version 4.8.5.   

A typical link line might be 

g++ -std=c++11 -I. -Wall -m64 -o fofra2018 fofra2018.cpp -L. -lfofra2018_scoreFusion_acme_0 

http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso


FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
12 

The Standard C++ library should be used for development.  The prototypes from this document will be written to 
a file "FOFRA2018.h" which will be included via  

#include <fofra2018.h> 

The header files will be made available to implementers at https://github.com/usnistgov/fofra2018.    

All compilation and testing will be performed on x86_64 platforms.  Thus, participants are strongly advised to 
verify library-level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST 
to avoid linkage problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file 
formats, etc.). 

7.5. Library naming requirements 

Participants shall provide NIST with pre-compiled binary code and optionally source code if they choose to 
participate with an open-source implementation.  The implementation, at a minimum, should be submitted in 
the form of a dynamically-linked library file. 

The core library shall be named according to Table 11.  Additional supplemental libraries may be submitted that 
support this “core” library file (i.e. the “core” library file may have dependencies implemented in these other 
libraries).  Supplemental libraries may have any name, but the “core” library must be dependent on 
supplemental libraries in order to be linked correctly. The only library that will be explicitly linked to the FOFRA 
test driver is the “core” library. 

Table 11 – Implementation library filename convention 

Form libfofra2018_track_provider_sequence.ending 

Underscore 
delimited parts 
of the filename 

libfofra2018 track provider sequence ending 

Description First part of the 
name, required 
to be this. 

“scoreFusion” for 
score-level fusion 
implementation 
“templateFusion” for 
template-level fusion 
implementation 

Single word, non-
infringing name of the 
main provider 
EXAMPLE:  Acme 

A one digit decimal 
identifier to start at 0 
and incremented by 
1 for each library 
sent to NIST. 

.so 

Example libfofra2018_scoreFusion_acme_0.so 

7.6. Hardware Specifications 

NIST will run submitted software on server-class machines equipped with multiple CPUs.  The following list gives 
some details about the hardware of each CPU-only blade type: 

• Dual Intel® Xeon® CPU E5-2630 v4 @ 2.20GHz (10 cores each)3 

• Dual Intel® Xeon® CPU E5-2680 v4 @ 2.4GHz (14 cores each)3 

Implementations will not have access to any graphics processing units (GPUs) for this test. 

                                                           

3 cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx 
fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology 
nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid 
dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch ida arat 
epb pln pts dtherm tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm 
cqm rdseed adx smap xsaveopt cqm_llc cqm_occup_llc 

https://github.com/usnistgov/fofra2018


FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
13 

7.7. Single-thread requirement and parallelization 

Implementations must run in single-threaded mode, because NIST will parallelize the test by dividing the 
workload across many cores and many machines.  Implementations must ensure that there are no issues with 
their software being parallelized via the fork() function. 

7.8. Submission folder hierarchy 

Participant submissions shall contain the following folders at the top level 

― lib/ - contains all participant-supplied software libraries 

― config/ - contains all configuration and developer-defined data, pre-computed fusion schemes/models, etc. 

― doc/ - contains any participant-provided documentation regarding the submission 

― validation/ - contains validation output, and in this case, is the fusion output of the provided training data 

― src/ - contains implementation source code if the participant chooses to participate with an open-source 
implementation.  This directory is optional. 

8. R APIs for score and template-level fusion (Open-source implementation) 
For developers who choose to submit open-source R code to NIST, the API is defined in this section. 

8.1. Score-level fusion 

8.1.1. Fusion of verification scores and identification candidate lists 

Table 12 – R API for fusion of verification scores and identification candidate lists 

 C++ code fragment  Remarks 

1. read_verification_fuser 

      <- function(directory) 
The function reads a pre-computed fusion scheme from the provided directory, 
including any normalization information.  The contents of the directory are 
developer-defined and are assumed to be computed in the function above (if 
implemented) or by the developer using training data provided by NIST. 

The function returns a function that does fusion. 
 myFuser <- function(scores, algorithms = NULL) 
The function accepts as input two vectors: 

− scores – a vector of scores, one from each of K = length(S) algorithms 
− algorithms – a vector of character strings identifying the K algorithms. This 

argument will be provided only on the first call to the function, to indicate 
the order of scores. Thereafter, the order will be same. 

Return value: The fused score, a scalar numeric. 

2. read_identification_fuser 

      <- function(directory) 
The function reads a pre-computed fusion scheme from the provided directory, 
including any normalization information.  The contents of the directory are 
developer-defined and are assumed to be computed in the function above, if 
implemented, or by the developer using training data provided by NIST. 



FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
14 

The function returns a function that does fusion: 
 myFuser <- function(clists, algorithms = NULL) 
It has semantics: 

- Input: clists - a list of K unnamed data.frames.  Each data.frame is a sorted 
candidate list containing 2 columns and L ≥ 1 rows. The first column is 
named scores, the second column has name hypothesized_ids.  The list of 
data.frames may be indexed as clists[[1]] and the scores as 
clists[[1]]$scores 

- algorithms – a vector of character strings identifying the K algorithms. This 
argument will be provided only on the first call to the function, to indicate 
the order of scores. Thereafter, the order will be same. 

 
Return value: A candidate list with two columns and number of rows on [L,2L], 
where L is the number of rows in the input data frames.  The two columns must be 
named scores and hypothesized_ids. 

8.2. Template-level fusion 

The following sub-clauses describe three functions that must be implemented.  Example R code is available in 
examples/fusion_example_template_level.R 

8.2.1. Template fuser 

 C++ code fragment  Remarks 

1. read_template_fuser <- 

      function(directory) 

 

Initialize the verifier, from permanent storage. 

Input: 

The directory must contain sufficient information to identity which 
algorithms were fused and to load an appropriate verifier. 

Return value: 

A function  

      myTemplateFuser <- function(templates) 

that takes an unnamed list whose elements are templates (numeric 
vectors) and returns a single fused template (numeric vector). The 
number of templates to be fused is length(templates).  A template may 
be indexed as templates[i] 

8.2.2. Verifier 

Given fused templates, the implementation must support one-to-one comparison of two such templates via: 

Table 13 – R API for fusion of comparison of fused templates 

 C++ code fragment  Remarks 

1. read_template_verifier <- 

      function(directory) 

 

Initialize the verifier, from permanent storage. 

Input: 

The directory must contain sufficient information to identity which 
algorithms were fused and to load an appropriate verifier. 

Return value: 

A function that takes exactly two templates (numeric vectors) and 
returns a similarity score (numeric scalar).  



FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
15 

8.2.3. Identifier 

The implementation most provide functions to support identification using fused templates as follows: 

Table 14 – R API for fusion of comparison of fused templates 

 C++ code fragment  Remarks 

1. read_template_identifier <- 

      function(directory) 

 

 

 

 

 

Initialize the identifier from permanent storage. 

Input: 

The directory must contain sufficient information to identity which 
algorithms were fused and to load an appropriate identifier. 

Return value: 

A list containing two named items. 

1. Item “builder” is a function that accepts as input 

a. gvectors - a rectangular matrix whose columns are feature 
vectors 

b. gids - a set of identity labels 

c. N, the number of enrolled feature vectors = number of columns 
in the matrix = length(gids) 

d. Nfeatures, the feature dimensionality = number of rows in the 
matrix 

The function returns nothing, retaining data internally. 

2. Item “searcher” is a function that accepts as input 

a. probe – a template i.e. numeric vector 

b. L – a candidate list length 

The function returns a candidate list of length L.  A candidate list is a 
data.frame containing two named columns and L rows 

a. scores – numeric similarity values in descending order 

b. hypothesized_ids – integer values from the “gids” set provided 
to the builder function. 

 

8.3. Source code naming requirements 

The implementation should be submitted in the form of an R source file. 

The core source file shall be named according to Table 11.  Additional supplemental source files may be 
submitted that support this “core” R file (i.e. the “core” R file may have dependencies implemented in these 
other source files).  The only R source file that will be explicitly called is the “core” source file. 

Table 15 – Implementation source filename convention 

Form fofra2018_track_provider_sequence.ending 

Underscore 
delimited parts 
of the filename 

fofra2018 track Provider sequence ending 

Description First part of the 
name, required 
to be this. 

“scoreFusion” for 
score-level fusion 
implementation 
“templateFusion” for 
template-level fusion 
implementation 

Single word, non-
infringing name of the 
main provider 
EXAMPLE:  Acme 

A one digit decimal 
identifier to start at 0 
and incremented by 
1 for each library 
sent to NIST. 

.R 

Example fofra2018_scoreFusion_acme_0.R 



FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
16 

8.4. Submission folder hierarchy 

Participant submissions shall contain the following folders at the top level 

― src/ - contains implementation R source code 

― config/ - contains all configuration and developer-defined data, pre-computed fusion schemes/models, etc. 

― doc/ - contains any participant-provided documentation regarding the submission 

9. General Liability Release 

By participating in the competition, each entrant hereby agrees that: 

1. IARPA shall not be responsible or liable for any losses, damages, or injuries of any kind (including death) 
resulting from participation in the competition or any competition-related activity, or from entrants’ 
acceptance, receipt, possession, use, or misuse of any prize; and 

2. Entrants will indemnify, defend, and hold harmless IARPA, NIST, and ODNI from and against all third 
party claims, actions, or proceedings of any kind and from any and all damages, liabilities, costs, and 
expenses relating to or arising from entrant’s participation in the competition. 

Without limiting the generality of the foregoing, IARPA is not responsible for incomplete, illegible, misdirected, 
misprinted, late, lost, postage-due, damaged, or stolen entries or prize notifications; or for lost, interrupted, 
inaccessible, or unavailable networks, servers, satellites, Internet Service Providers, websites, or other 
connections; or for miscommunications, failed, jumbled, scrambled, delayed, or misdirected computer, 
telephone, cable transmissions or other communications; or for any technical malfunctions, failures, difficulties, 
or other errors of any kind or nature; or for the incorrect or inaccurate capture of information, or the failure to 
capture any information.  These rules cannot be modified except by IARPA.  All decisions by IARPA regarding 
adherence to these rules are final.  The invalidity or unenforceability of any provision of these rules shall not 
affect the validity or enforceability of any other provision.  In the event that any provision is determined to be 
invalid or otherwise unenforceable or illegal, these rules shall otherwise remain in effect and shall be construed 
in accordance with their terms as if the invalid or illegal provision were not contained herein. 

10. Warranties / Indemnification 

By participating in the competition, each entrant represents, warrants, and covenants as follows: 

1. The entrant – whether an individual, team or entity – is the sole author, creator, and owner of the 
submission or has secured usage rights to include as part of the software submission; 

2. The submission is not the subject of any actual or threatened litigation or claim; 

3. The submission does not and will not violate or infringe upon the intellectual property rights, privacy 
rights, publicity rights, or other legal rights of any third party; 

4. The submission does not and will not contain any known harmful equipment that can cause injury or 
long term risks of exposure in humans; and 

5. The Submission, and entrants’ use of the Submission, does not and will not violate any applicable laws 
or regulations, including, without limitation, applicable export control laws and regulations of the U.S. 
and other jurisdictions. 

If the Submission includes any third party works (such as third party content, equipment, or open source code), 
entrant must be able to provide, upon the request of IARPA, documentation of all appropriate licenses and 
releases for such third party works.  If entrant cannot provide documentation of all required licenses and 
releases, IARPA reserves the right to disqualify the applicable Submission, or seek to secure the licenses and 
releases for the benefit of IARPA, and allow the applicable Submission to remain in the Competition.  IARPA also 



FOFRA 2018 – FUSION OF FACE RECOGNITION ALGORITHMS 

   
17 

reserves all rights with respect to claims based on any damages caused by participant’s failure to obtain such 
licenses and releases.  

Entrants – whether an individual, a team or an entity – will indemnify, defend, and hold IARPA, NIST, and ODNI 
from and against all third party claims, actions, or proceedings of any kind and from any and all damages, 
liabilities, costs, and expenses relating to or arising from entrant’s Submission or any breach or alleged breach of 
any of the representations, warranties, and covenants of entrant hereunder. 

IARPA reserves the right to disqualify any Submission that IARPA, in its discretion, deems to violate the Rules. 
IARPA also reserves the right to amend these rules throughout the duration of the contest should extenuating 
circumstances arise. 


	1. Overview
	1.1. Organization
	1.2. Motivation

	2. Overview
	3. Rules for Participation
	3.1. Participation Agreement
	3.2. Options for participation
	3.3. Submissions for open-source implementations
	3.3.1. Open-source implementation
	3.3.2. Licensing
	3.3.3. Participation Eligibility


	4. Training Data
	5. Validation
	6. Reference Implementation
	7. C++ APIs for score and template-level fusion (Open or closed-source implementation)
	7.1. Score fusion of verification scores and identification candidate lists
	7.2. Template fusion for verification and identification
	7.3. C++ API data elements
	7.3.1. Data structure for return value of API function calls
	7.3.2. Datatypes for sets of verification scores
	7.3.3. Datatype for candidates
	7.3.4. Datatype for candidate lists
	7.3.5. Datatype for a single template

	7.4. Operating system, compilation, and linking environment
	7.5. Library naming requirements
	7.6. Hardware Specifications
	7.7. Single-thread requirement and parallelization
	7.8. Submission folder hierarchy

	8. R APIs for score and template-level fusion (Open-source implementation)
	8.1. Score-level fusion
	8.1.1. Fusion of verification scores and identification candidate lists

	8.2. Template-level fusion
	8.2.1. Template fuser
	8.2.2. Verifier
	8.2.3. Identifier

	8.3. Source code naming requirements
	8.4. Submission folder hierarchy

	9. General Liability Release
	10. Warranties / Indemnification

